
Abstract. We present a detailed investigation of the
perturbation approach for calculating zero-point vibra-
tional contributions to molecular properties. It is dem-
onstrated that if the sum of the potential energy and the
zero-point vibrational energy is regarded as an e�ective
potential energy, the leading contribution to the ®rst-
order wave function vanishes in the perturbation
approach. Two di�erent perturbation approaches have
been investigated numerically by calculations of some
magnetic properties for a few diatomic molecules and
the results obtained have been compared to the exact
numerical results. It is shown that only a few terms need
to be included in a perturbation expansion to obtain an
accuracy in the calculated rovibrational contribution
better than the quality normally obtained for the
potential and property surfaces in electronic structure
calculations.

Key words: Zero-point vibrations ± Variation-
perturbation method

1 Introduction

The vibrational part of the molecular wave function may
be calculated to high accuracy for diatomic, triatomic
and sometimes even slightly larger molecules [1±10]. For
polyatomic molecules, molecular complexes and con-
densed phases, however, it is much more di�cult to go
beyond the harmonic approximation. A few years ago, a
method where the zero-point vibrational energy was
treated as an additional potential energy was introduced
and applied to the calculation of intermolecular vibra-
tional frequencies of bimolecular complexes [11]. The
method has also been applied to calculate rovibrational

averages of magnetic properties of diatomic mole-
cules [12±15] and results close to those obtained using
numerical integration have been obtained [12]. In the
approach, the zero-point vibrational average of a mo-
lecular propertyX for a diatomic molecule is given as [12]

hXi � Xeff � X�2�eff

4mxeff
; �1�

where e� denotes that the property has been calculated
at an e�ective geometry, which is the minimum of the
surface de®ned by the sum of the potential energy and
the zero-point vibrational energy. In Eq. (1), m is the
reduced mass, x the harmonic frequency, and X�2� the
second derivative of the molecular property with respect
to the bond distance. The approach corresponds to a
harmonic oscillator approximation, expanded around a
variationally determined expansion point, and thus has
clear connections to variational transition-state theo-
ry [16] and to an approach by Bishop and Pipin [17].
However, no investigation of the importance of higher-
order terms in the expansion of the potential and
property surfaces has been carried out for this approach.

The purpose of this work is to analyze higher-order
contributions to Eq. (1) in terms of the variation±per-
turbation approach by Kern and Matcha [18], which in
turn is based on the approach used by Hylleraas [19]
in 1930 for calculating the energy of the He atom. We
demonstrate that by expanding around an e�ective ge-
ometry instead of the equilibrium geometry, the most
important higher-order term vanishes. We present re-
sults for di�erent magnetic properties of four diatomic
molecules, and compare these to the results obtained
using numerical integration.

2 Theory

The purpose of this section is to analyze the approach
introduced in Ref. [11] for calculating vibrationally
averaged molecular properties [12] in terms of the
variation±perturbation approach [18]. We will restrict
ourselves to the vibrational ground state and to diatomic
molecules, but extensions to vibrationally excited
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states [20] and polyatomic molecules [18] are straight-
forward.

The potential energy may be expanded around an
arbitrary expansion point rexp as

V q� � � V �0�exp � V �1�expq� 1

2
V �2�expq2

� 1

6
V �3�expq3 � 1

24
V �4�expq4 � � � � ; �2�

where q � r ÿ rexp is the deviation from the expansion
point and V �n�exp is the nth derivative of the potential with
respect to q calculated at rexp. If the quadratic term
is included in the zeroth-order Hamiltonian and the
remaining terms are treated as perturbations, we have

H �0� � p2

2m
� 1

2
V �2�expq2 ; �3�

where the ®rst term on the right-hand side is the
ordinary kinetic-energy operator. This is the Hamilto-
nian for a harmonic oscillator, which has the well-known
eigenvalues

E�0�n � �n� 1
2�x ; �4�

and eigenfunctions

W�0�n � NnHn n� �eÿ1
2n

2

; �5�
where x �

������������������
�V �2�=m�

p
, n � �������

mx
p

q, n is the vibrational
quantum number, Nn are normalization constants and
Hn n� � are Hermite polynomials. Normally, the expan-
sion of the potential in Eq. (2) is carried out around
the equilibrium geometry re where V �1�e � 0. In our
approach [11, 12], however, another expansion point
is adopted. By choosing the Hamiltonian as

H � H �0� � V �0�exp ; �6�
and the Harmonic oscillator wave function W�0�0 in
Eq. (5) as a trial function and minimizing the energy
functional

~E�0� � V �0�exp � h ~W�0�0 jH �0�j ~W�0�0 i � V �0�exp �
1

2
xexp ; �7�

with respect to the expansion point, rexp, an optimized
expansion point, reff, is found. Thus, both the optimized
expansion point, reff, and the corresponding harmonic
frequency, xeff, have been determined in the variational
procedure. The second term on the right-hand side of
Eq. (7) is the zero-point vibrational energy, and we thus
see that carrying out the Taylor expansion of the
potential around reff instead of around the equilibrium
geometry, re, is an improvement compared to the
conventional harmonic oscillator approximation [11].
In variational transition-state theory [16], the zero-point
vibrational energies of all modes other than that
describing the reaction path are included in the Ham-
iltonian used in the variational procedure; thus, this part
of the zero-point vibrational energy can be regarded as
an additional potential energy. In our approach, how-
ever, we include the total zero-point vibrational energy
in the variational treatment [11]. Furthermore, we note
that when ~E�0� in Eq. (7) is minimized with respect to the
expansion point, the condition

V �1�eff �
V �3�eff

4mxeff
� 0 ; �8�

is ful®lled. If we regard the remaining terms in the
expansion of the potential in Eq. (2) as perturbations

H �1� � V �1�expq� 1

6
V �3�expq3 ; �9�

and

H �2� � 1

24
V �4�expq4 ; �10�

and apply Rayleigh±SchroÈ dinger perturbation theory
[21]

hWjH ÿ EjWi � hW�0� � kW�1� � k2W�2� � � � � j
� �H �0� ÿ E�0�� � k�H �1� ÿ E�1��
� k2�H �2� ÿ E�2�� � � � � jW�0� � kW�1�

� k2W�2� � � � �i ; �11�
where k is an order parameter and the subscript n
in Eqs. (4) and (5) has been dropped since only
the vibrational ground state (n � 0) is considered. By
solving Eq. (11) for each order of k, the ®rst-order
correction to the energy is found to be

E�1� � hW�0�jH �1�jW�0�i ; �12�
which vanishes since H �1� in Eq. (9) is odd with respect
to the geometrical displacement q. The second-order
energy, E�2�, can be regarded as an energy functional
[18],

~E�2� � hW�0�jH �2�jW�0�i � 2hW�0�jH �1�j ~W�1�i
� h ~W�1�jH �0� ÿ E�0�j ~W�1�i ; �13�

which can be minimized with respect to the trial function
~W�1�. We expand the ®rst-order wave function in a
complete set of harmonic oscillator wave functions (see
Eq. 5)

~W�1� �
X1
r�1

a�1�r W�0�r ; �14�

where W�0�0 is the wave function obtained in Eq. (7). We
thus get

@ ~E�2�

@a�1�r

� 2V �1�hqi0r �
1

3
V �3�exp hq3i0r

� 2a�1�r hH �0� ÿ E�0�irr ; �15�
where we have used the notation hHips � hW�0�p jH jW�0�s i.
These integrals can be evaluated by standard proce-
dures, and we ®nd

a�1�r �
ÿ 2V �1�exp hqi0r � 1

3 V �3�exp hq3i0r

� �
2hH �0� ÿ E�0�irr

: �16�

Note that the only two non-zero terms are a�1�1 and a�1�3 .
Following the approach by Kern and Matcha [18], the
potential is expanded around re and the coe�cients
become
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a�1�1 �
ÿV �3�e

4
���
2
p

xe mxe� �32
�17�

and

a�1�3 �
ÿV �3�e

12
���
3
p

xe mxe� �32
; �18�

where the subscript e denotes that the properties are
calculated at the equilibrium geometry.1 In comparison
with the work by Kern and Matcha [18], the only
extension here is that we expand the potential around reff
instead of around re. It can then be shown that

a�1�1 becomes zero because of the condition in Eq. (8),

whereas a�1�3 is similar to Eq. (18)

a�1�3 �
ÿV �3�eff

12
���
3
p

xeff mxeff� �32
; �19�

since hqi03 � 0. We thus see that the leading higher-order
term of the wave function vanishes if the expansion
point is determined variationally. If the same procedure
is carried out for the second-order wave function, we
obtain

a�2�s

� ÿ
1
12 V �4�exp hq4i0s ÿ

P
r�1;3 2V �1�exp hqirs � 1

3 V �3�exp hq3irs

� �
a�1�r

2hH �0� ÿ E�0�iss ;

�20�
where a�2�s 6� 0 for s � 2; 4; 6. For an expansion around
the equilibrium geometry (where V �1�e � 0) we obtain

a�2�2 �
���
2
p ÿV �4�e

32xe mxe� �2 �
3V �3�

2

e

64x2
e mxe� �3

 !
; �21�

a�2�4 �
���
3

2

r
ÿV �4�e

96xe mxe� �2 �
7V �3�

2

e

288x2
e mxe� �3

 !
; �22�

and

a�2�6 �
���
5
p

V �3�
2

e

432x2
e mxe� �3 ; �23�

which is consistent with the results of Sprandel and
Kern [22]. If we instead carry out the expansion around
the e�ective geometry (where a�1�1 � 0), we obtain

a�2�2 �
���
2
p ÿV �4�eff

32xeff mxeff� �2 �
V �3�

2

eff

96x2
eff mxeff� �3

 !
; �24�

a�2�4 �
���
3

2

r
1

96

ÿV �4�eff

xeff mxeff� �2 �
V �3�

2

eff

x2
eff mxeff� �3

 !
; �25�

and

a�2�6 �
���
5
p

V �3�
2

eff

432x2
eff mxeff� �3 : �26�

Compared to the expansion around the equilibrium
geometry, the V �4�exp terms are equivalent, whereas the V �3�eff
terms have smaller prefactors for a�2�2 and a�2�4 .

The corrections to a molecular property, P for the
vibrational motion is given as

hP i � hWjP q� �jWi
hWjWi ; �27�

where the property surface PE may be expanded around
an expansion point rexp as

P q� � �
X

m

Pm � P �0�exp � P �1�expq� 1

2
P �2�expq2 � 1

6
P �3�expq3

� 1

24
P �4�expq4 � � � � : �28�

Applying the perturbation±variation expansion to the
expansion in Eq. (28), one obtains [18]

hP i �
X1
mn

hP �n�m i ; �29�

where

hP �n�m i �
X1
k�0
hkkW�k�jPmjknÿkW�nÿk�i

" #

� 1�
X1
m�1

X1
l�1
ÿ1� �m hklW�l�jklW�l�i

� �m
" #

; �30�

where we have carried out a Taylor expansion of
the normalization hWjWiÿ1 around W � W�0�. The
zeroth-order term in k gives

hP �0�iexp � hP �0�0 iexp � hP �0�2 iexp � hP �0�4 iexp

� P �0�exp �
P �2�exp

4mxexp
� P �4�exp

32 mxexp

ÿ �2 : �31�

The ®rst-order term in k gives

hP �1�iexp � hP �1�1 iexp � hP �1�3 iexp �
�������������

2

mxexp

s
P �1�expa�1�1

� P �3�exp

6 mxexp

ÿ �3
2

���
3

2

r ���
3
p

a�1�1 �
���
2
p

a�1�3

� �
: �32�

If the expansion is carried out around the speci®c point
reff, hP �1�i is reduced to

hP �1�ieff �
P �3�eff

6 mxeff� �32
���
3
p

a�1�3 ; �33�

i.e., the term that includes the gradient of the property
vanishes. Hence, the most important ®rst-order contri-
bution, hP �1�1 i, and the largest contribution to hP �1�3 i vanish
if a variationally determined expansion point is adopted.

1Equations (17) and (18) are consistent with Eqs. (22) and (23) of
Ref. [18] for polyatomic molecules. The di�erences are due to the
fact that we have carried out a Taylor expansion of the potential
instead of a power expansion, and that we have used the coordinate
q instead of n � �������

mx
p

q
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We note that the traditional perturbation approach, also

including the anharmonicity of the potential [23, 24],

corresponds to the inclusion of hP �0�2 ie and hP �1�1 ie.
The ®rst contribution to which higher-order terms in

the normalization contribute is the term of second-order
in k, for which we get

hP �2�m i � 2hW�0�jPmjW�2�i � hW�1�jPmjW�1�i
ÿ hW�0�jPmjW�0�ihW�1�jW�1�i : �34�

We note that hP �2�0 i is zero since the second and third
terms cancel each other. Hence, we get

hP �2�2 iexp �
1

2mxexp
P �2�exp

���
2
p

a�2�2 � a�1�1 a�1�1

�
�

���
6
p

a�1�1 a�1�3 � 3a�1�3 a�1�3

�
�35�

and

hP �2�4 iexp�
1

24 mxexp

ÿ �2 P �4�exp

3���
2
p a�2�2 �

���
3

2

r
a�2�4

 

�3a�1�1 a�1�1 �5
���
6
p

a�1�1 a�1�3 �18a�1�3 a�1�3

!
; �36�

which are simpli®ed if the expansion is carried out
around reff since a�1�1 is then zero, and we may then write

hP �2�2 ieff �
1

2mxeff
P �2�eff

���
2
p

a�2�2 � 3a�1�3 a�1�3

� �
�37�

and

hP �2�4 ieff �
1

24 mxeff� �2

� P �4�eff

3���
2
p a�2�2 �

���
3

2

r
a�2�4 � 18a�1�3 a�1�3

 !
: �38�

In Eq. (33) it was found that the term including the
gradient of the property vanishes for the ®rst order in k
if reff is used as an expansion point. This is in accordance
with the observation that if the expansion point is
chosen as the vibrationally averaged geometry
(rexp � hri), the linear term of P q� � in Eq. (28) will not
contribute to hPi since hqi � hr ÿ hrii trivially becomes
zero [25]. Furthermore, it is noted that the second-order
contributions in Eqs. (35) and (36) do not contribute to
the averaged molecular geometry since they do not
include the gradient of the property. Consequently, the
choice of reff as an expansion point corresponds to
the vibrationally averaged geometry to second order in
the wave function. By calculating the average molecular
geometry, hri, from Eqs. (31) and (32) by adopting an
expansion around re, we obtain

hri � re ÿ V �3�e

4xe mxe� �2 ; �39�

which is equal to reff to second order in k. We can thus
use Eq. (39) to calculate reff and it is therefore not
necessary to carry out the minimization in Eq. (7).

3 Computational details

We used the DALTON program [26] to calculate potential and
property surfaces for HF, HCl, N2 and F2. Since our purpose is to
study the convergence properties of the perturbation approach to
rovibrational corrections rather than to calculate accurate vibra-
tionally averaged properties, we restricted ourselves to calculations
at the self-consistent-®eld (SCF) level. The molecules studied have
di�erent harmonic frequencies and anharmonicities and also have
di�erent geometry dependencies of the property surfaces. For all
molecules, we calculated magnetizabilities [27], rotational g fac-
tors [28], nuclear shielding constants [29] and spin-rotation con-
stants [28], using London atomic orbitals to ensure gauge-origin
independence and size-extensivity [30]. We did not include the
Thomas precession contribution to the spin-rotation constants. For
the polar molecules HF and HCl, we have also reported the cal-
culated dipole moments. In all calculations we used the atomic
natural orbitals (ANO) basis sets of Pierloot et al. [31], with a
[5s4p3d] contraction for Cl, [4s3p2d] for N and F and [3s2p] for H.
To analyze the potential and property surfaces, we used MAT-
LAB [32]. For calibration, the rovibrational corrections were
calculated numerically using a ®nite-element approach previously
used to calculate rovibrational corrections to nuclear magnetic
shieldings and spin-rotation constants [1, 2].

4 Results

For all molecules, the zero-point vibrationally averaged
properties were calculated both using an expansion
around the equilibrium geometry (denoted with the
subscript e) and from an expansion around the e�ective
geometry de®ned in Eq. (7) (denoted with the subscript
e�). The parameters that describe the potential functions
are reported in Table 1.

For the HF molecule, the e�ective bond length, reff, is
a few hundredths of a bohr longer than the equilibrium
value, re. For the dipole moment of HF (see Table 2 for

Table 1. Potential function parameters (in atomic units)

HF HCl N2 F2

re 1.6988 2.3899 2.0172 2.5210

V �2�e 0.7259 0.3646 1.9723 0.5754
xe 0.02040 0.01429 0.01243 0.00576

V �3�e )2.7639 )1.0517 )7.1231 )1.8558
V �4�e 9.7657 2.7764 22.1405 5.1322

a�1�1 0.1128 0.1010 0.0507 0.0571

a�1�3 0.0307 0.0275 0.0138 0.0155

a�2�2 0.0103 0.00843 0.00232 0.00296

a�2�4 0.00730 0.00590 0.00154 0.00196

a�2�6 0.00211 0.00169 0.000426 0.000539

reff 1.7258 2.4184 2.0229 2.5291

V �1�eff 0.0186 0.00997 0.0111 0.00460

V �2�eff 0.6548 0.3357 1.9320 0.5605
xeff 0.01937 0.01371 0.01230 0.00569

V �3�eff )2.5137 )0.9756 )6.9979 )1.8147
V �4�eff 8.7898 2.5735 21.7406 5.0117

a�1�3 0.0318 0.0283 0.0139 0.0157

a�2�2 )0.0111 )0.00876 )0.00194 )0.00244
a�2�4 0.000496 0.000406 0.000152 0.000199

a�2�6 0.00226 0.00179 0.000432 0.000551

368



the properties of HF), this shift in bond length gives
a vibrational contribution of 0.0112 a.u., whereas the
harmonic term hl�0�2 i gives the dominating contribution
to the remaining 0.0007 a.u. In the vicinity of re, the
dipole moment of HF thus changes almost linearly with
the bond length.

For the magnetizability, n, the zero-point vibrational
contribution behaves di�erently. The isotropic part has a
very small vibrational contribution of about
ÿ0:25� 10ÿ30 J/T2, to be compared with the equilibri-
um value of ÿ172:65� 10ÿ30 J/T2, which is due both to
the fact that each contribution to the vibrational average
is small, but also because the two largest terms cancel
each other. For the magnetizability anisotropy, Dn, the
harmonic term hDn�0�2 i is the dominant contribution.
Whereas the shift in the geometry gives a small positive
contribution, hDn�0�2 i gives a much larger negative
contribution. As for the dipole moment, hP �0�4 i and
hP �1�3 i, as well as the terms of second order in k, give
contributions which are orders of magnitudes smaller
than the largest terms. We note in particular that hP �1�3 ieff
is much smaller than hP �1�3 ie, which is due to the fact that
a�1�1 is zero for the expansion around the e�ective ge-
ometry. The same behavior is found for the terms of
second order in k. Compared to numerical integration,
both perturbation approaches give excellent results. As
expected, the expansion around an e�ective geometry

gives results closer to numerical integration than an
expansion around the equilibrium geometry, which is
mainly due to the vanishing a�1�1 term in the former case.

For the isotropic nuclear magnetic shieldings, rF and
rH, as well as for their anisotropies, DrF and DrH, the
shift in the geometry and the harmonic term hP �0�2 i are
the dominant contributions to the rovibrational correc-
tion. For the ¯uorine spin-rotation constant, MF, the
shift in the geometry gives almost all the vibrational
e�ects, whereas hP �1�1 ie and hP �0�2 ie almost cancel for MH.

In this case, hP �2�2 ie, hP �1�3 ie and hP �0�4 ie also give sub-

stantial contributions to hMHi.
As for HF, the e�ective bond length in HCl is only a

few hundredths of a bohr longer than that of the equi-

librium geometry (Table 1). Both the second (V �2�e ) and

third (V �3�e ) derivatives with respect to the geometry are,
however, much smaller for HCl than for HF, which is
also re¯ected in the smaller vibrational frequency. We
note that the same trends applies to the properties of the
HCl molecule as applied for HF (see Table 3 for the
results obtained for HCl), as for instance the dipole
moment changes almost linearly with the bond length.
For the isotropic part of the magnetizability, the zero-
point vibrational contribution is small because the ef-

fects of the geometry shift and the harmonic term hn�0�2 i
almost cancel. As for HF, the vibrational e�ects on the

Table 2. Property function parameters of HF

l
(a.u.)

n
�10ÿ30 J/T2)

Dn
�10ÿ30 J/T2)

g rF

(ppm)
DrF

(ppm)
rH

(ppm)
DrH

(ppm)
MF

(kHz)
MH

(kHz)

P �0�e 0.7483 )172.651 8.1311 0.7677 420.547 91.9344 29.7286 23.7437 )287.847 80.2449

P �1�e 0.4119 )18.8974 1.9817 )0.2380 )204.988 304.028 )25.4640 )28.7552 )809.644 )235.992
P �2�e 0.1121 33.2209 )40.1752 )0.2994 )372.642 568.076 42.8597 28.8797 2.7227 808.393

P �3�e )0.2896 21.5739 )37.9111 0.7021 )396.602 570.864 )75.3014 )21.3590 )528.691 )3032.60
P �4�e 0.8362 7.1616 22.4817 )2.0259 12.2207 46.628 101.568 24.8298 2491.39 12451.5
hP �0�2 ie 0.000787 0.2334 )0.2822 )0.00210 )2.6178 3.9907 0.3011 0.2029 0.0191 5.6789

hP �0�4 ie 0.000021 0.000177 0.000555 )0.000050 )0.000302 0.00115 0.00251 0.000613 0.0615 0.3072

hP �1�1 ie 0.01102 )0.5054 0.0530 )0.00636 )5.4825 8.1313 )0.6810 )0.7691 )21.654 )6.3117
hP �1�3 ie )0.000067 0.00495 )0.00871 0.000161 )0.0911 0.1311 )0.0173 )0.00490 )0.1214 )0.6964
hP �2�2 ie 0.000061 0.0180 )0.0218 )0.000162 )0.2021 0.3081 0.0232 0.0157 0.00148 0.4384

hP �2�4 ie 0.000004 0.000037 0.000118 )0.000011 0.000064 0.000244 0.00053 0.000130 0.0130 0.0652

hPie 0.7601 )172.900 7.8720 0.7592 412.154 104.497 29.3576 23.1890 )309.528 79.7266

P �0�eff 0.7595 )173.149 8.1698 0.7612 414.876 100.351 29.0565 22.9779 )309.706 74.1588

P �1�eff 0.4149 )17.9926 0.8833 )0.2458 )215.193 319.572 )24.3340 )27.9833 )809.755 )215.233
P �2�eff 0.1046 33.8058 )41.1903 )0.2811 )383.342 583.500 40.8629 28.3124 )10.6603 730.861

P �3�eff )0.2661 21.7455 )37.2805 0.6522 )395.997 571.628 )72.6573 )20.6676 )463.446 )2718.19
P �4�eff 0.8990 5.7179 23.8463 )1.6883 31.4095 11.8345 94.7701 25.9378 2337.02 10883.2

hP �0�2 ieff 0.000774 0.2501 )0.3047 )0.00208 )2.8355 4.3161 0.3023 0.2094 )0.0789 5.4061

hP �0�4 ieff 0.000025 0.000156 0.000652 )0.000046 )0.000859 0.000324 0.00259 0.000710 0.0639 0.2977

hP �1�3 ieff )0.000012 0.00102 )0.00174 0.000030 )0.0185 0.0267 )0.00339 )0.000965 )0.0216 )0.1269
hP �2�2 ieff )0.000020 )0.00636 0.00775 0.000053 0.0721 )0.1097 )0.00768 )0.00532 0.00200 )0.1374
hP �2�4 ieff )0.0000009 )0.000058 )0.000024 0.000002 )0.000032 )0.000012 )0.000097 )0.000026 )0.00237 )0.0111
hPieff 0.7602 )172.904 7.8718 0.7592 412.095 104.584 29.3502 23.1817 )309.743 79.5872

hPianum 0.7602 )172.904 7.8715 0.7591 412.095 104.584 29.3510 23.1820 )309.738 79.6031

aObtained by numerical methods
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magnetizability anisotropy, hDnieff, are dominated by
the harmonic term hDn�0�2 i. For the nuclear shielding and
spin-rotation constants, we note that the two leading
terms hP �1�1 ie (or the shift of the geometry) and hP �0�2 i
dominate.

Compared to HF and HCl, N2 has a much larger re-
duced mass, re¯ected in a small harmonic vibrational
frequency as well as small contributions to the ®rst-order
wave function (Table 1). Furthermore, the di�erence
between the e�ective and equilibrium geometries is only
about 0.006 bohr. Still, the zero-point vibrational e�ects
on the magnetizability (Table 4) are much larger for N2

than for HF and HCl because the two leading terms,
hP �1�1 ie and hP �0�2 i, have the same sign for N2, whereas they
almost canceled for HF and HCl. For the rotational g
factor, the shielding tensor and the spin-rotation con-
stant, we again note that the dominant zero-point vibra-
tional contributions stem from the shift in the bond length
and the harmonic contribution. In particular for the
shielding tensor, the small change in the geometry con-
tributes several parts per million to the rovibrational
correction. For N2, the perturbation expansion gives
larger deviations from numerical integration than was the
case for HF and HCl. For some properties, the expansion
around reff gives larger deviations compared to numerical
integration than does an expansion around re, which in-
dicate that higher-order terms aremore important for this
molecule.

The geometry shift of F2 is 0.008 bohr, which is
slightly larger than that of N2. Furthermore, F2 has a
much smaller harmonic frequency and third derivative
of the potential. As for N2, the vibrational contributions
to the magnetizability tensor are a few 10ÿ30 J/T2

(Table 5). Thus, for the four molecules studied here, the
vibrational contributions to the isotropic part of the
magnetizability are all less than 1%. The shielding tensor
of F2 has a large geometry dependence, but also a sub-
stantial contribution from the harmonic term. In fact,
the isotropic shielding is 17.8 ppm at the equilibrium
geometry, but the small shift in the geometry of only
0.008 bohr to the e�ective geometry decreases the
shielding to 9.0 ppm, and the harmonic term decreases
rF further to 4.0 ppm. As for HF and HCl, the pertur-
bation expansions give results close to that of numerical
integration.

5 Discussion

As discussed in the previous section, both an expansion
around the equilibrium geometry and the e�ective
geometry determined by Eq. (7) give results that in
most cases are in good agreement with those obtained
using numerical integration when all contributions to
second order in k are included. However, we also want
to investigate the performance and adequacy of using

Table 3. Property function parameters of HCl

l
(a.u)

n
(10ÿ30 J/T2)

Dn
(10ÿ30 J/T2)

g rCl

(ppm)
DrCl

(ppm)
rH

(ppm)
DrH

(ppm)
MCl

(kHz)
MH

(kHz)

P �0�e 0.4563 )411.488 )4.9392 0.4692 968.716 270.436 31.3338 22.2135 )50.3732 43.1303

P �1�e 0.2294 )22.0584 0.8982 )0.0736 )330.118 494.048 )17.8783 )19.3556 )52.9983 )83.7721
P �2�e 0.0896 46.2514 )63.3254 )0.4472 )456.684 687.509 21.1457 13.3702 )25.7732 197.797

P �3�e )0.1016 34.5145 )38.3476 0.7029 )373.656 553.879 )29.1295 )3.2633 12.5265 )537.359
P �4�e 0.1081 )12.1140 10.2883 )1.5239 )77.7689 134.169 38.4488 )9.3522 )10.6118 1631.78

hP �0�2 ie 0.000878 0.4532 )0.6205 )0.00438 )4.4748 6.7365 0.2072 0.1310 )0.2525 1.9381

hP �0�4 ie 0.000005 )0.00058 0.00049 )0.000073 )0.00373 0.00644 0.00185 )0.000449 )0.00051 0.0783

hP �1�1 ie 0.00649 )0.6235 0.0254 )0.00208 )9.3316 13.9656 )0.5054 )0.5471 )1.4981 )2.3680
hP �1�3 ie )0.000034 0.0117 )0.0130 0.000238 )0.1265 0.1875 )0.00986 )0.00110 0.00424 )0.1819
hP �2�2 ie 0.000055 0.0283 )0.0387 )0.000273 )0.2791 0.4201 0.0129 0.00817 )0.0157 0.1209

hP �2�4 ie 0.0000009 )0.000100 0.000085 )0.000013 )0.000639 0.00110 0.000316 )0.000077 )0.000087 0.0134

hPie 0.4637 )411.619 )5.5854 0.4626 954.500 291.753 31.0408 21.8039 )52.1360 42.7311

P �0�eff 0.4629 )412.097 )4.9394 0.4669 959.129 284.786 30.8331 21.6677 )51.8929 40.8229

P �1�eff 0.2320 )20.7273 )0.9206 )0.0860 )343.274 513.851 )17.2878 )18.9762 )53.7272 )78.3512
P �2�eff 0.0868 47.2295 )64.4137 )0.4278 )467.358 703.338 20.3317 13.2734 )25.4210 183.136

P �3�eff )0.0982 34.1813 )38.1030 0.6613 )376.029 557.927 )28.0415 )3.5389 12.1957 )493.067
P �4�eff 0.1314 )11.2193 6.7781 )1.3979 )89.5324 151.084 37.9574 )9.9786 )12.7675 1481.60

hP �0�2 ieff 0.000886 0.4822 )0.6577 )0.00437 )4.7721 7.1816 0.2076 0.1355 )0.2596 1.8700

hP �0�4 ieff 0.000007 )0.00058 )0.000353 )0.000073 )0.00467 0.00788 0.00198 )0.000520 )0.000666 0.0772

hP �1�3 ieff )0.000007 0.00230 )0.00257 0.000045 )0.0253 0.0376 )0.00189 )0.000238 )0.000821 )0.0332
hP �2�2 ieff )0.000018 )0.00963 0.0131 0.000087 0.0953 )0.1434 )0.00415 )0.00271 0.00518 )0.0374
hP �2�4 ieff )0.0000002 0.000017 )0.000010 0.000002 0.000136 )0.000229 )0.000058 0.000015 0.000019 )0.00224
hPieff 0.4638 )411.623 )5.5862 0.4626 954.422 291.869 31.0366 21.7998 )52.1471 42.6973

hPinum 0.4638 )411.623 )5.5858 0.4626 954.435 291.856 31.0367 21.8000 )52.1463 42.6970
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Eq. (1) to calculate rovibrational corrections, i.e., using
a simple harmonic oscillator approximation.

In Table 6 we have collected the percentage of the
zero-point vibrational contribution recovered by using
Eq. (1), i.e., P �0�eff � hP �0�2 ieff ÿ P �0�e , relative to the zero-
point vibrational contribution estimated using numerical
integration, hPi ÿ P �0�e . In this table we also include the
more common approach of obtaining zero-point vibra-
tional averaging by expanding around the equilibrium
geometry, also including the anharmonicity of the
potential, i.e., hP �0�2 ie � hP �1�1 ie. We also indicate the
size of the numerical zero-point vibrational contribution
relative to the total rovibrationally corrected molecular
property.

From Table 6 one notes that by using Eq. (1) very
good results are in general obtained, with most zero-
point vibrational contributions being reproduced to
within a couple of a percent, although a few exceptions
do exist, most notably the hydrogen shieldings. We also
note that the use of a harmonic oscillator approximation
at the e�ective geometry gives more accurate results than
does an expansion around the equilibrium geometry,
even when the anharmonicity of the potential is included
in the latter approach. In particular, the use of the ef-
fective geometry as an expansion point gives signi®-
cantly better estimates of the rovibrational corrections
than does the use of the equilibrium geometry for the
HCl molecule.

The observation that we get very accurate estimates
of zero-point vibrational corrections by using an ef-
fective geometry indicates that this approach may also
be viable for estimating rovibrational corrections in
polyatomic molecules. Not only does the approach
appear to give very good zero-point vibrational cor-
rection, but the simple form of the nuclear wave
function in this approximation, a simple Gaussian
function, makes it easy to construct vibrational wave
functions also for polyatomic molecules. It should be
emphasized that reff is equal to the vibrationally aver-
aged molecular geometry, hri, to second order in k, and
it has thus been demonstrated that an expansion
around hri converges faster than an expansion around
re. Furthermore, the parameters obtained in an ex-
pansion around hri, (reff), correspond to physically
meaningful parameters. However, the accuracy of this
approach in polyatomic molecules will need further
investigation.

6 Conclusions

In this work, we have demonstrated that we can, by
regarding the zero-point vibrational energy as a poten-
tial, make a perturbation expansion of the nuclear wave
function that converges more rapidly than an expansion
around the equilibrium geometry. Even if the shift of the

Table 4. Property function parameters of N2

n (10ÿ30 J/T2) Dn (10ÿ30 J/T2) g rN (ppm) DrN (ppm) MN (kHz)

P �0�e )212.147 )135.826 )0.2782 )67.2001 610.899 )14.0354
P �1�e 133.017 )296.185 )0.1982 )518.626 745.690 )8.0401
P �2�e 502.918 )706.320 )0.7313 )1049.06 1619.93 )20.8790
P �3�e 1196.59 )1791.20 )0.6027 )2890.21 4257.37 )42.7261
P �4�e 6321.65 )9610.88 )11.2460 )15768.6 23791.0 )380.368
hP �0�2 ie 0.7924 )1.1130 )0.00115 )1.6530 2.5525 )0.0329
hP �0�4 ie 0.00785 )0.0119 )0.000014 )0.0196 0.0295 )0.000472
hP �1�1 ie 0.7570 )1.6855 )0.00113 )2.9514 4.2435 )0.0458
hP �1�3 ie 0.0131 )0.0196 )0.000007 )0.0317 0.0467 )0.000468
hP �2�2 ie 0.0129 )0.0181 )0.000019 )0.0269 0.0415 )0.000535
hP �2�4 ie 0.000349 )0.000530 )0.0000006 )0.00087 0.00131 )0.000021
hPie )210.563 )138.675 )0.2805 )71.8835 617.814 )14.1155

P �0�eff )211.380 )137.529 )0.2793 )70.1778 615.182 )14.0816
P �1�eff 135.908 )300.247 )0.2024 )524.662 755.007 )8.1600
P �2�eff 509.851 )716.701 )0.7350 )1065.81 1644.62 )21.1291
P �3�eff 1232.69 )1846.07 )0.6666 )2980.19 4393.12 )44.8860
P �4�eff 6324.90 )9615.81 )11.1485 )15753.5 23767.6 )376.372
hP �0�2 ieff 0.8117 )1.1410 )0.00117 )1.6968 2.6183 )0.0336
hP �0�4 ieff 0.00802 )0.0122 )0.000014 )0.0200 0.0301 )0.000477
hP �1�3 ieff 0.00251 )0.00377 )0.000001 )0.00608 0.00896 )0.000092
hP �2�2 ieff )0.00350 0.00492 0.000005 0.00732 )0.0113 0.000145

hP �2�4 ieff )0.000047 0.000071 0.00000008 0.00012 )0.00018 0.000003

hPieff )210.561 )138.681 )0.2805 )71.8932 617.828 )14.1157

hPinum )210.574 )138.660 )0.2805 )71.8602 617.779 )14.1151
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geometry is only a few hundredths of a bohr for HF and
HCl, and less than 0.01 bohr for N2 and F2, these shifts
have large e�ects on the zero-point vibrational correc-
tions, especially on the shielding tensors. Furthermore,
we have shown that Eq. (1) gives the dominant vibra-
tional e�ects, and that the sizes of the higher-order
contributions are, in general, much smaller than the
errors introduced in an electron structure calculation

when the orbital or correlation spaces are truncated [12±
15]. Although the traditional perturbation expansion
around the equilibrium geometry [23, 24] gives accurate
results, we have shown that if the expansion is carried
out around the e�ective geometry instead, the largest
contribution to hP �1�3 i, hP �2�2 i and hP �2�4 i vanishes, in
contrast to the case if the expansion is carried out
around the equilibrium geometry.

Table 6. The recovery of the numerical zero-point vibrational (ZPV) contribution to the di�erent molecular properties using Eq. (1) or
calculated using the equilibrium geometry as an expansion, including the anharmonicity of the potential (see text). All numbers in percent

Molecule Exp. point l n Dn g rX DrX rH DrH MX MH

HF E�ectivea 100.6 98.0 102.5 99.8 100.6 100.7 97.9 99.1 100.2 106.0
Equilibriumb 99.2 107.5 88.3 98.4 95.8 95.8 100.6 100.8 98.8 98.6
ZPV contributionc 1.6 0.1 3.3 1.1 2.1 12.1 1.3 2.4 7.1 0.8

HCl E�ectivea 99.8 93.9 101.7 101.1 100.5 100.5 98.7 99.2 100.3 100.9
Equilibriumb 98.2 126.1 92.0 97.9 96.7 96.6 100.4 100.6 98.7 99.2
ZPV contributionc 1.6 0.03 11.5 1.4 1.5 7.3 1.0 1.9 3.4 1.0

N2 E�ectivea 100.4 100.4 98.7 100.3 100.3 100.1
Equilibriumb 98.4 98.7 99.1 98.8 98.8 98.7
ZPV contributionc 0.7 2.0 0.8 6.5 1.1 0.6

F2 E�ectivea 100.0 99.9 100.8 99.9 99.9 100.0
Equilibriumb 98.1 98.1 95.9 98.4 98.4 99.0
ZPV contributionc 0.8 2.4 1.6 343 2.8 2.0

a Calculated as
�ÿ

P �0�eff � hP �0�2 ieff ÿ P �0�e

�
=
ÿhPinum ÿ P �0�e

��� 100%
bCalculated as

�ÿhP �0�2 ie � hP �1�1 i
�
=
ÿhPinum ÿ P �0�e

��� 100%
cCalculated as

�ÿhPinum ÿ P �0�e

�
=hPinum

�� 100%

Table 5. Property function parameters of F2

n (10ÿ30 J/T2) Dn �10ÿ30 J/T2) g rF (ppm) DrF (ppm) MF (kHz)

P �0�e )207.169 )105.900 )0.0822 17.7513 708.096 )99.1259
P �1�e 84.7921 )149.979 )0.0419 )1073.33 1594.34 )202.723
P �2�e 362.936 )525.362 )0.3631 )1937.34 2925.74 )140.438
P �3�e 320.795 )485.063 0.4909 )2943.68 4387.63 )233.723
P �4�e 1164.3 )1817.19 )2.4026 )6577.02 9906.61 )691.517
hP �0�2 ie 0.9090 )1.3158 )0.000909 )4.8522 7.3277 )0.3517
hP �0�4 ie 0.00365 )0.00570 )0.000007 )0.0206 0.0311 )0.00217
hP �1�1 ie 0.6849 )1.2115 )0.000338 )8.6703 12.8789 )1.6376
hP �1�3 ie 0.00793 )0.0120 0.000012 )0.0728 0.1085 )0.00578
hP �2�2 ie 0.0188 )0.0272 )0.000019 )0.1003 0.1515 )0.00727
hP �2�4 ie 0.000206 )0.000322 )0.0000004 )0.00116 0.00175 )0.000122
hPie )205.544 )108.473 )0.0835 4.0339 728.596 )101.131
P �0�eff )206.470 )107.132 )0.0826 8.9930 721.107 )100.773

P �1�eff 87.7426 )154.251 )0.0448 )1089.13 1618.18 )203.869
P �2�eff 365.573 )529.351 )0.3592 )1961.40 2961.61 )142.354
P �3�eff 330.281 )499.854 0.4716 )2997.41 4468.57 )239.332
P �4�eff 1177.89 )1834.95 )2.3538 )6691.47 10077.7 )693.408
hP �0�2 ieff 0.9277 )1.3433 )0.000911 )4.9772 7.5153 )0.3612
hP �0�4 ieff 0.00379 )0.00591 )0.000008 )0.0215 0.0324 )0.00223
hP �1�3 ieff 0.00153 )0.00232 0.000002 )0.0139 0.0207 )0.00111
hP �2�2 ieff )0.00504 0.00730 0.000005 0.0270 )0.0408 0.00196

hP �2�4 ieff )0.000028 0.000043 0.00000006 0.000157 )0.000236 0.000016

hPieff )205.542 )108.477 )0.0835 4.0076 728.635 )101.135

hPinum )205.542 )108.477 )0.0835 4.0074 728.635 )101.135
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